|
№ 2/2022
2. Kauko T., D’Amato M. Mass Appraisal Methods: An international perspective for property valuers. RICS Research, 2008. 3. Borst R. A., McCluskey W. J. Using geographically weighted regression to detect housing submarkets: modeling large-scale spatial variations in value. Journal of Property Tax Assessment & Administration. 2008. Vol. 5, Iss. 1. P. 21–54. URL: researchex- change.iaao.org/jptaa/vol5/iss1/2. 4. The potential of artificial neural networks in mass appraisal: the case revisited / W. McCluskey, P. Davis, M. Haran et al. Journal of Financial Management of Property and Construction.2012.Vol.17,No.3.P.274–292.URL:doi.org/10.1108/13664381211274371. 5. Кірічек Ю. О., Ланд Є. О., Гайденко Є. Ю. Оцінка нерухомості, в тому числі земельних ділянок для цілей оподаткування. Вісник Придніпровської державної академії будівництва та архітектури. 2012. №12. С. 7–12. 6. Драпіковський О. І., Іванова І. Б. Моделі масової оцінки міських земель. Вісник Придніпровської державної академії будівництва та архітектури. 2013. № 7. С. 19–28. 7. International Valuation Standards / IVSC. London, UK, 2019. 8. IAAO Standard on Mass Appraisal of Real Property. Kansas City, Missouri, USA, 2012. URL: www.iaao.org/media/standards/StandardOnMassAppraisal.pdf. 9. Wang D., Jing Li V. Mass Appraisal Models of Real Estate in the 21st Century: A Systematic Literature Review. Sustainability. 2019. Vol. 11, Iss. 24. URL: doi.org/10.3390/ su11247006. 10. Anselin L. Spatial Econometrics: Methods and Models. Dordrecht : Kluwer Acade- mic Publishers, 1988. 284 p. URL: doi.org/10.1007/978-94-015-7799-1. 11. Lockwood T., Rossini P. Efficacy in Modelling Location within the Mass Appraisal Process. Pacific Rim Property Research Journal. 2011. Vol. 17, Iss. 3. P. 418–442. URL: doi.org/10.1080/14445921.2011.11104335. 12. Dimopoulos T., Moulas A. A Proposal of a Mass Appraisal System in Greece with CAMA System: Evaluating GWR and MRA techniques in Thessaloniki Municipality. Open Geosciences. 2016. Vol. 8, Iss. 1. P. 675–693. URL: doi.org/10.1515/geo-2016-0064. 13. Modified Data-Driven Framework for Housing Market Segmentation / C. Wu, X. Ye, F. Ren, Q. Du. Journal of Urban Planning and Development. 2018. Vol. 144, Iss. 4. URL: https:// doi.org/10.1061/(ASCE)UP.1943-5444.0000473. 14. Belyaeva A. V. Spatial models in mass appraisal of real estate. Computer Research and Modeling. 2012. Vol. 4, No. 3. P. 639–650. URL: crm.ics.org.ru/journal/article/1932/. 15. D’Amato M. A Location Value Response Surface Model for Mass Appraising: An Iterative Location Adjustment Factor in Bari, Italy. International Journal of Strategic Property Management. 2010. Vol. 14, No. 3. P. 231–244. URL: doi.org/10.3846/ ijspm.2010.17. 16. Verkooijen W. J. H. Neutral networks in Economic Modelling : Doctoral dissertation. Tilburg University, Center for Economic Research, 1996. 205 p. 17. Messe R., Wallace N. Nonparametric Estimation of Dynamic Hedonic Price Models and Construction of Residential Housing Price Indices. Real Estate Economics. 1991. Vol. 19, Iss. 3. P. 308–332. URL: doi.org/10.1111/1540-6229.00555. 18. Pace R. K. Parametric, Semiparametric, and Nonparametric Estimation of Characteristic Values within Mass Assessment and Hedonic Pricing Models. The Journal of Real Estate Finance and Economics. 1995. Vol. 11, Iss. 3. P. 195–217. URL: doi.org/ 10.1007/BF01099108. 19. Mc Cluskey W. J., Anand S. The application of intelligent hybrid techniques for the mass appraisal of residential properties. Journal of Property Investment & Finance. 1999. Vol. 17, Iss. 3. P. 218–238. URL: doi.org/10.1108/14635789910270495. 20. Prediction accuracy in mass appraisal: A comparison of modern approaches / W. J. McCluskey, M. McCord, P. T. Davis et al. Journal of Property Research. 2013. Vol. 30, Iss. 4. P. 239–265. URL: doi.org/10.1080/09599916.2013.781204. 21. Worzala E., Lenk M., Silva A. An Exploration of Neural Networks and Its Application to Real Estate Valuation. Journal of Real Estate Research. 1995. Vol. 10, Iss. 2. P. 185–201. URL: doi.org/10.1080/10835547.1995.12090782. 22. Nguyen N., Cripps A. Predicting Housing Value: A Comparison of Multiple Regression Analysis and Artificial Neural Networks. Journal of Real Estate Research. 2001. Vol. 22, Iss. 3. P. 313–336. URL: dx.doi.org/10.1080/10835547.2001.12091068. 23. A Genetic Algorithm for Modelling Locational Effects on Residential Property Prices / R. E. Cooley, A. D. Pack, M. Hobbs, A. D. E. Clewer. The Cutting Edge 1994 Conference Procee- dings. 1994. P. 179–193. 24. Using ridge regression with genetic algorithm to enhance real estate appraisal forecasting / J. J. Ahn, H. W. Byun, K. J. Oh, T. Y. Kim. Expert Systems with Applications. 2012. Vol. 39, Iss. 9. P. 8369–8379. URL: doi.org/10.1016/j.eswa.2012.01.183. 25. Pawlak Z. Rough Sets. International Journal of Computer and Information Science. 1982. Vol. 11. P. 341–356. URL: doi.org/10.1007/BF01001956. 26. Pawlak Z. Rough Sets. Theoretical Aspects of Reasoning about Data. Dordrecht : Kluwer Academic Publisher, 1991. 229 p. URL: doi.org/10.1007/978-94-011-3534-4. 27. D’Amato M. Appraising Properties with Rough Set Theory. Journal of Property Investment and Finance. 2002. Vol. 20, Iss. 4. P. 406–418. URL: dx.doi.org/10.1108 /14635780210435074. 28. D’Amato M. A comparison between MRA and Rough Set Theory for Mass Appraisal. A case in Bari. International Journal of Strategic Property Management. 2004. Vol. 8 (4). P. 205– 217. URL: doi.org/10.3846/1648715X.2004.9637518. 29. D’Amato M. Un’applicazione della RST per mass appraisal: il caso di Amsterdam. Rivista del Consulente Tecnico. 2004. Vol. 2. P. 260–282. URL: iris.poliba.it/handle /11589/7739#.YXWXm5rP1PZ. 30. Del Giudice V., De Paola P., Cantisani G. B. Rough Set Theory for Real Estate Apprai- sals: An Application to Directional District of Naples. Buildings. 2017. Vol. 7 (1). URL: https:// doi.org/10.3390/buildings7010012 31. Kilpatrick J. Expert problem solving practice in commercial property valuation: an exploratory study. Journal of Property Investment & Finance. 2018. Vol. 36, Iss. 4. URL: https:// doi.org/10.1108/JPIF-05-2017-0037. 32. Ferreira F. A. F., Spahr R. W., Sunderman M. A. Using multiple criteria decision analysis (MCDA) to assist in estimating residential housing values. International Journal of Strategic Property Management. 2016. Vol. 20, Iss. 4. P. 354–370. URL: doi.org/10.38 46/1648715X.2015.1122668. 33. Naderi I., Sharbatoghlie A., Vafaeimehr A. Housing valuation model: An investigation of residential properties in Tehran. International Journal of Housing Markets and Analysis. 2012. Vol. 5, Iss. 1. P. 20–40. URL: www.emerald.com/insight/content/doi/10.1108/17538271211206644/full/html. |